Geant4 9.4

A SHORT GUIDE TO CHOOSING PHYSICS LISTS

Slides prepared by

Dennis Wright (SLAC) & Sébastien Incerti (CNRS/IN2P3)

Introduction

- Building a physics list or choosing from already built physics lists is highly dependent on your use-case
- In either case, you need to be familiar with the major physics processes used to build them
 - the process-model catalog is useful for this
 - see Geant4 web page under User Support, item 10b
- Geant4 provides several "reference physics lists" which are routinely validated and updated with each release
 - these should be considered only as starting points which you may need to modify for your application
- There are also many physics lists in the examples which can copy
 - these are usually very specific to a given use-case

Introduction

- □ There are currently 28 "packaged" physics lists available
 - but you will likely be interested in only a few, namely the "reference physics lists"
 - many physics lists are either developmental or customized in some way, and so not very useful to new users
- All but one of the packaged physics lists use templates
 - the LBE physics list is the old-style "flat" physics list without templates or physics builders
- □ Reference physics lists
 - QGSP_BERT, QGSP_BERT_EMV, QGSP_BERT_HP, QGSP_BIC, FTFP_BERT, LBE, LHEP
 - plus a few more

Physics List Naming Convention

- □ "QGS" Quark gluon string model (>~20GeV)
- □ "FTF" Fritiof Model (>~10GeV)
- "LHEP" Low and High energy parameterization model
- □ "BIC" Binary Cascade Model (<~10 GeV)</p>
- □ "BERT" Bertini Cascade Model (<~10 GeV)</p>
- "HP" High Precision Neutron Model (<20MeV)</p>
- □ "PRECO" Pre compound Model (<~150MeV)</p>
- "EMV(X)" Variation of Standard EM package

Reference Physics Lists

□ LHEP

- fastest of all physics lists
- not the most precise
- contains standard EM processes
- good at describing showers in detectors

□ QGSP_BERT

- the physics list most recommended for HEP
- used by ATLAS
- contains standard EM processes
- uses Bertini cascade for hadrons of energy below ~10 GeV
- uses QGS model for high energies (> 20 GeV)

Reference Physics Lists

- □ QGSP_BERT_EMV
 - also recommended for HEP
 - same as QGSP_BERT, but with EM processes tuned for better CPU performance
 - increase in speed comes with a slight decrease in EM precision
 - used by CMS
- □ QGSP_BERT_HP
 - same as QGSP_BERT, but with high precision neutron model
 - used for neutrons below 20 MeV
 - significantly slower than QGSP_BERT when full thermal cross sections used
 - can speed up significantly by turning off thermal scattering
 - can be used for radiation protection and shielding applications

Reference Physics Lists

- □ QGSP_BIC
 - uses Binary cascade, precompound and various de-excitation model for hadrons
 - standard EM
 - recommended for use at energies below 200 MeV (medical)
- QGSP_BIC_HP
 - same as QGSP_BIC, but with high precision neutron model used for neutrons below 20 MeV
 - use for radiation protection, shielding and medical applications
- For more see
 - http://geant4.web.cern.ch/geant4/support/proc_mod_catalog/ physics_lists/referencePL.shtml

Other Physics Lists (based on use-case)

- □ If energy of primary particle in your application is < 5 GeV (for example, clinical proton beam of 150 MeV)
 - start with physics list which includes "BERT" or "BIC"
 - e.g. QGSP_BERT, QGSP_BIC, FTFP_BERT, etc.
- If your application requires detailed neutron transport
 - start with physics list which contains "HP"
 - e.g. QGSP_BERT_HP, QGSP_BIC_HP, etc.
- If you are interested in Bragg curve physics
 - start with physics list which includes "EMX" or "EMV"
 - e.g. QGSP_BERT_EMV, QGSP_BERT_EMX
- □ If your application deals with nucleus-nucleus interactions
 - contact Tatsumi Koi @ SLAC (custom physics list required)

Other Physics Lists (based on use-case)

- If your application needs optical photon transportation
 - only LBE physics list is suitable
- If your application needs "radioactive decay"
 - only LBE physics list is suitable
- If your application needs detailed line emissions from EM processes
 - use the LowEnergy EM package
 - LBE maybe be suitable
- □ If you want to use LowEnergy EM package
 - □ try LBE
 - see following slides

1) How to use the already available Electromagnetic Physics lists?

- These Physics list classes derive from the G4VPhysicsConstructor abstract base class
- A good implementation example of PhysicsList class that uses these already available Physics lists is available in

\$G4INSTALL/examples/extended/electromagnetic/TestEm2

- In your PhysicsList class, you need to:
 - Create a dynamic Physics List object in the constructor
 - For eg. emPhysicsList = new G4EmLivermorePhysics();
 - Delete it in the destructor
 - Define particles in the PhysicsList::ConstructParticle() method
 - Eventually set your production cuts
- The source code for these Physics lists is available in the following directory \$G4INSTALL/source/physics_list/builders

Alternative EM Physics Lists

- Up to now, most physics lists mentioned have used the "standard" EM processes,
 - G4EmStandardPhysics default
 - G4EmStandardPhysics_option1 HEP, fast but not precise
 - G4EmStandardPhysics_option2 experimental
 - □ G4EmStandardPhysics_option3 medical, space
- but several "low energy" EM builders are available
 - G4EmLivermorePhysics
 - G4EmLivermorePolarizedPhysics
 - G4EmPenelopePhysics
 - G4EmDNAPhysics
 - These are recommended for low energy EM & radiobiology applications
 - For examples using the « DNA » physics list, go to
 - geant4/source/examples/advanced/dnaphysics
 - geant4/source/examples/advanced/microdosimetry

2) Usage of pre-packaged Physics lists

- How to use these Physics lists?
 - Directly in your main()

□ To print them

See description of Physics Lists

```
http://geant4.web.cern.ch/geant4/support/proc_mod_catalog/physics_lists/referencePLshtml
```